Input and Output Privacy-Preserving Linear Regression
نویسندگان
چکیده
منابع مشابه
Privacy Preserving Linear Regression on Distributed Databases
Studies that combine data from multiple sources can tremendously improve the outcome of the statistical analysis. However, combining data from these various sources for analysis poses privacy risks. A number of protocols have been proposed in the literature to address the privacy concerns; however they do not fully deliver on either privacy or complexity. In this paper, we present a (theoretica...
متن کاملPrivacy-Preserving Multivariate Statistical Analysis: Linear Regression and Classification
Multivariate statistical analysis is an important data analysis technique that has found applications in various areas. In this paper, we study some multivariate statistical analysis methods in Secure 2-party Computation (S2C) framework illustrated by the following scenario: two parties, each having a secret data set, want to conduct the statistical analysis on their joint data, but neither par...
متن کاملPrivacy-preserving logistic regression
This paper addresses the important tradeoff between privacy and learnability, when designing algorithms for learning from private databases. We focus on privacy-preserving logistic regression. First we apply an idea of Dwork et al. [6] to design a privacy-preserving logistic regression algorithm. This involves bounding the sensitivity of regularized logistic regression, and perturbing the learn...
متن کاملPrivacy-Preserving Logistic Regression
Logistic regression is an important statistical analysis methods widely used in research fields, including health, business and government. On the other hand preserving data privacy is a crucial aspect in every information system. Many privacy-preserving protocols have been proposed for different statistical techniques, with various data distributions, owners and users. In this paper, we propos...
متن کاملPrivacy-Preserving Regression Algorithms
Regression is arguably the most applied data analysis method. Today there are many scenarios where data for attributes that correspond to predictor variables and the response variable itself are distributed among several parties that do not trust each other. Privacy-preserving data mining has grown rapidly studying the scenarios where data is vertically partitioned. While algorithms have been d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2017
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.2016inp0019